Sudie des Fraunhofer-Instituts ISE

»Hohes Innovationstempo muss beibehalten werden!«

30. September 2021, 9:58 Uhr | Kathrin Veigel
Fraunhofer ISE PV-Leistung
Um die Klimaschutzziele zu erreichen, müssen bis 2100 PV-Anlagen mit einer Leistung von 80 bis 170 TW installiert werden.
© abriendomundo/Shutterstock

Ein kosteneffizienter Klimaschutz erfordert die Installation von insgesamt 20 bis 80 TWp Photovoltaikleistung bis 2050 und 80 bis 170 TWp bis 2100. Aber ist ein solches Wachstum aus Ressourcensicht überhaupt machbar? Das haben Fraunhofer-Forscher nun genauer untersucht.

Obwohl die Photovoltaik (PV) die wichtigste Technologie für erneuerbare Energien zur kostenoptimierten Eindämmung des Klimawandels ist, wird der damit verbundene hohe Ressourcenbedarf selten diskutiert. In der Studie »Technological learning for resource efficient terawatt scale photovoltaics« hat ein Forschungsteam des Fraunhofer-Instituts für Solare Energiesysteme ISE und des Potsdam-Instituts für Klimafolgenforschung den Ressourcenbedarf für eine PV-Industrie im Terawatt-Maßstab abgeschätzt, die für die Begrenzung der globalen Erwärmung auf 1,5 °C erforderlich ist. Sie konzentrierten sich dabei auf die wichtigsten Ressourcen, die unabhängig von der Art der verwendeten Technologie benötigt werden, nämlich Energie, Flachglas, Kapitalinvestitionen und als exemplarisches Metall Silber.

Die Analyse zeigt, dass ohne kontinuierliche technologische Fortschritte die Ressourcenbeschränkungen den Einsatz der Photovoltaik im Terawatt -Maßstab höchstwahrscheinlich behindern werden. »Glücklicherweise entwickelt sich die Photovoltaiktechnologie ständig weiter, und neue Systeme sind effizienter und verbrauchen bei der Produktion weniger Ressourcen«, erklärt Dr. Jan Christoph Goldschmidt, Gruppenleiter Neue Solarzellen-Konzepte am Fraunhofer ISE und Erstautor des Papers. »Wir müssen diese Entwicklung auch langfristig in der Zukunft beibehalten.« Schon jetzt werden technologische Lösungen wie Tandemsolarzellen auf Perowskit-Basis im Labor entwickelt, die hohe Wirkungsgrade bei niedrigen Kosten und geringem Ressourcenverbrauch versprechen.

»Die Begrenzung der globalen Erwärmung auf 1,5 °C bei niedrigsten Kosten erfordert eine 7- bis 14-fache Steigerung der PV-Kapazität bis 2030 und einen kontinuierlichen Ausbau danach«, so Robert Pietzcker vom Potsdam-Institut für Klimafolgenforschung. Der Aufbau der globalen PV-Infrastruktur wird einige Prozent des Emissions-Budgets aufbrauchen, das mit dem 1,5°C-Ziel kompatibel wäre, schätzen die Autoren unter der Annahme einer fortgesetzten technologischen Entwicklung ab. Dann wird die Photovoltaik aber mehr als die Hälfte des globalen Elektrizitätsbedarfs abdecken.

Weil das verbleibende Budget so knapp ist, sei es wichtig, dass auch die Photovoltaik so schnell wie möglich hoch effizient werde. Langfristig seien nur 4 bis 11 Prozent des jährlich aus der Photovoltaik erzeugten Stroms für die Produktion von PV-Systemen nötig, sowohl für den Ersatz als auch für den weiteren Ausbau der Kapazitäten, so die Studie. Dieser »Eigenverbrauch« ist vergleichbar mit dem der derzeitigen fossilen Energietechnologien. Die prognostizierten jährlichen Investitionen lägen ebenfalls in der gleichen Größenordnung wie die Umsätze der derzeit größten Öl- und Gasunternehmen. 

Glasnachfrage wird steigen

Die massive Ausweitung der PV-Produktion wird auch die Glasnachfrage erhöhen, aber die fortgesetzte Steigerung des Modulwirkungsgrads verringert die pro Wp benötigte Modulfläche. Das Team schätzt die jährlich produzierte Modulfläche für das Jahr 2100 auf 12.000 bis 22.000 Quadratkilometer, was in etwa der gesamten derzeitigen weltweiten Flachglas-Produktion entspricht. Aus Ressourcensicht ist dies wahrscheinlich nicht kritisch, da Sandvorkommen reichlich vorhanden sind und Glas recycelbar ist, aber die aktuelle Produktion wird bereits von anderen Märkten benötigt, so dass für die Solarenergie die Produktionskapazitäten dringend erweitert werden müssen.

Fraunhofer ISE
Je nach Modultechnologie und Ausbauszenario muss die Glasproduktion erheblich ausgebaut werden.
© Fraunhofer ISE

Bei Silber gibt es einen starken historischen Trend zur Verringerung der Silbermenge aufgrund der hohen Preise und Verbesserungen in der Drucktechnik. Kann diese Entwicklung beibehalten werden, wird der Gesamtsilberverbrauch unter 18.000 t bleiben oder könnte im besten Fall in etwa auf dem heutigen Niveau bleiben. Indium, das für transparente leitfähige Oxide in Mehrfachzellen verwendet wird, ist ein weiteres Element, das kritisch werden könnte.

»Die Ergebnisse unserer Studie bedeuten, dass einige dringende Aufgaben angegangen werden müssen«, betont Goldschmidt. »Die Entwicklung emissionsarmer PV-Technologien sollte Priorität haben, ein rascher Ausbau der Flachglas-Produktionskapazitäten innerhalb der nächsten zehn Jahre ist notwendig und wir brauchen Recyclinganlagen, die die enormen Materialströme bewältigen können. Außerdem müssen wir die Technologien für Tandemsolarzelle in die Industrie übertragen, um die erforderlichen hohen Wirkungsgrade zu erreichen, und der Ersatz von Indium in transparenten leitenden Schichten ist nach wie vor eine Herausforderung«.

Aktuelle und künftige Investitionen müssen daher nicht nur auf die Kapazitätserweiterung abzielen, sondern auch auf die Aufrechterhaltung des derzeit hohen Innovationstempos mit dem Fokus auf Nachhaltigkeit, so die Autoren abschließend. 


Das könnte Sie auch interessieren

Verwandte Artikel

Fraunhofer ISE (Institut für Solare Energiesysteme)