Sie sind hier: HomeThemenSmart PowerBrennstoffzellen

ZSW: Kombitanke soll Strom, Wasserstoff und Methan liefern

Die Tankstelle der Zukunft soll den Fahrern Strom, Wasserstoff sowie das Erdgassubstitut Methan aus regenerativen Quellen bereitstellen – und das möglichst effizient, kostengünstig und bedarfsgerecht. Sie wird jetzt vom ZSW im Rahmen des Forschungs-Projekts »QUARREE 100« entwickelt.

Kombi-Tankstelle Bildquelle: © ZSW

Das vom Bundeswirtschaftsministerium mit rund 1,3 Millionen Euro geförderte Forschungsvorhaben,  in dessen Rahmen das des Zentrums für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) die Tankstelle entwickelt, dauert fünf Jahre . Bislang gibt es für Methan aus Ökostrom keine entsprechenden Tankstellen. Bislang werden Strom- und Wasserstofftankstellen massiv ausgebaut, auch solche, die beide Energieformen anbieten. Eine Tankstelle, die Strom, Wasserstoff und auch Methan liefert, gibt es bislang aber noch nicht. Mit dem ZSW-Projekt soll sich das nun ändern.

Die Idee der Wissenschaftler aus Stuttgart: Eine Multienergiezapfsäule. Erneuerbarer Strom etwa aus Windkraftanlagen soll über das Stromnetz direkt in die Batterie der Elektroautos geladen werden. Ist der Bedarf höher als das Angebot, springt eine zugeschaltete stationäre Großbatterie ein, die zuvor bei einem Überangebot an Strom gefüllt wurde.

»Ist die Batterie voll und können auch die tankenden Elektroautos den Strom nicht mehr abnehmen, erfolgt bei Bedarf in einem zweiten Schritt die Umwandlung des Ökostroms in Wasserstoff«, erklärt Dr. Ulrich Zuberbühler vom ZSW. Diesen Kraftstoff nutzen Brennstoffzellenfahrzeuge. Fällt mehr Wasserstoff an, als gebraucht wird, kommt er in einen Speicher.

In einem dritten Schritt erzeugt die Tankstelle der Zukunft Methan. Das soll dann erfolgen, wenn der Wasserstoffspeicher voll ist und die Brennstoffzellenautos das Gas nicht abnehmen. Wasserstoff lässt sich z.B. im deutschen Erdgasnetz nur bis zu maximal fünf Prozent speichern, sonst greift das Gas die Metallwände der Speicher an. Methan schädigt Stahlwände dagegen nicht.

Zur Umwandlung in Methan wird dem Wasserstoff Kohlendioxid zugeführt. Beide Gase reagieren an einem Katalysator zu Methan. Methan ist der Hauptbestandteil von Erdgas, Erdgasautos können den Kraftstoff problemlos nutzen. Ist mehr verfügbar als getankt wird, kommt das Methan in einen Speicher. Ist dieser voll, wird das Methan in das Erdgasnetz eingespeist.

»Mit unserem Vorhaben bleibt die Kopplung des Stromnetzes mit der Mobilität nicht auf Elektroautos beschränkt“, erklärt Zuberbühler. „Auch die anderen alternativen Antriebe profitieren davon.«
Die ZSW-Wissenschaftler glauben an eine stufenförmige Nutzung erneuerbarer Energie. Priorität hat die Nutzung mit den geringsten Energieverlusten. Die Stufe 1 wird erst verlassen, wenn ihr Potenzial ausgereizt ist und so weiter. Am effizientesten ist die Verwendung des regenerativen Stroms in Elektromotoren. Hier fallen keine Energieumwandlungsverluste an, sondern nur bis zu 10 Prozent Batteriespeicherverluste.

Erst wenn dieser Bedarf gedeckt ist, kommen die nächsten Stufen in Betracht: Zuerst die Umwandlung in Wasserstoff und dann die Methanisierung. Der Wirkungsgrad von Strom zu Wasserstoff liegt bei rund 75 Prozent, der von Strom zu Methan bei 60 Prozent. Gelagert werden können die chemischen Langzeitspeicher ohne Verluste. Wird die bei der Umwandlung entstehende Abwärme genutzt, steigert das den Wirkungsgrad um einige Prozentpunkte.

Ziel des ZSW in dem Projekt ist es, die Effizienz, Lebensdauer und Wirtschaftlichkeit der beiden Hauptkomponenten zu verbessern. Bei ihnen handelt es sich um einen alkalischen Druck-Elektrolyseur und einen Plattenreaktor zur Methanisierung. Sie werden im 100-Kilowatt-Maßstab weiterentwickelt. Um die Elektrolyse und die Methansynthese zeitlich voneinander zu entkoppeln, ist ein Wasserstoffzwischenspeicher vorgesehen, den das Institut konzeptionell entwickelt und sicherheitstechnisch bewertet.

Für die technische Entwicklung inklusive Sicherheitskonzept und Klärung aller Genehmigungsdetails haben die Forscher drei Jahre Zeit. In einem Demonstrationsbetrieb vor Ort soll das Ganze dann ab dem Jahr 2020 getestet werden.