»Bioprinting«

Zell-Lebensraum aus dem 3D-Drucker

23. Oktober 2019, 13:45 Uhr   |  Hagen Lang

Zell-Lebensraum aus dem 3D-Drucker
© TU Wien

So breiten sich die Zellen in der 3D-Struktur aus: Links Woche 1, Mitte Woche 3, rechts Woche 5. Oben eine dreidimensionale Anordnung, unten eine einzelne Schicht.

Die TU Wien hat ein Verfahren entwickelt, feinste gerüstartige Strukturen, in denen Zellen für Experimente eingebracht werden, mit spezieller »Bio-Tinte« mit Druckgeschwindigkeiten von einem Meter pro Sekunde zu drucken und die Zellen direkt einzubetten.

“Wie sich eine Zelle verhält, hängt ganz entscheidend von den mechanischen und chemischen Eigenschaften sowie von der Geometrie ihrer Umgebung ab“, erklärt Prof. Aleksandr Ovsianikov, Leiter der Forschungsgruppe 3D Printing and Biofabrication am Institut für Werkstoffwissenschaften und Werkstofftechnologie der TU Wien. „Die Strukturen, in denen die Zellen eingebettet sind, müssen für Nährstoffe durchlässig sein, damit die Zellen überleben und sich vermehren können. Ganz wichtig ist aber auch, ob die Strukturen steif oder biegsam sind, ob sie stabil sind oder im Lauf der Zeit abgebaut werden.“

In diese solche Strukturen können Zellen neuerdings direkt eingebettet werden, mit der „Bioprinting“ genannten Technik, wobei es zuvor „einfach an den passenden chemischen Substanzen“ fehlte, sagt Aleksandr Ovsianikov. „Man braucht Flüssigkeiten oder Gele, die punktgenau erstarren, wo man sie mit einem fokussierten Laserstrahl beleuchtet. Diese Materialien dürfen für die Zellen allerdings nicht schädlich sein, und das Ganze muss außerdem noch extrem schnell ablaufen.“

Um eine extrem hohe Auflösung zu erreichen, verwendet man an der TU Wien bereits seit Jahren die Methode der Zwei-Photonen-Polymerisation. Dabei nutzt man eine chemische Reaktion, die nur dann in Gang gesetzt wird, wenn ein Molekül des Materials zwei Photonen des Laserstrahls gleichzeitig absorbiert. Das ist nur dort möglich, wo der Laserstrahl eine besonders hohe Intensität hat. Genau dort härtet die Substanz aus, überall sonst bleibt sie flüssig. Daher ist diese Zwei-Photonen-Methode geeignet, um mit hoher Präzision feinste Strukturen herzustellen.

 

Genau wegen der hohen Auflösung hat die Methode hat allerdings normalerweise den Nachteil, sehr langsam zu sein – oft musste man sich mit einer Schreibgeschwindigkeit im Bereich von Mikrometern oder wenigen Millimetern pro Sekunde genügen. An der TU Wien hingegen schafft man mit zellfreundlichen Materialien einen Meter pro Sekunde. Nur, wenn der ganze Prozess zumindest in wenigen Stunden abgeschlossen ist, kann man davon ausgehen, dass die Zellen tatsächlich überleben und sich weiterentwickeln.

 

„Für die Zellforschung ist das ein wichtiger Schritt nach vorne“, ist Ovsianikov überzeugt. „Mit solchen 3D-Modellen kann man das Verhalten von Zellen mit einer bisher unerreichbaren Genauigkeit untersuchen. Man kann herausfinden, wie sich Krankheiten ausbreiten – und wenn man Stammzellen verwendet, könnte man auf diese Weise sogar maßgeschneidertes Gewebe herstellen.“

Auf Facebook teilen Auf Twitter teilen Auf Linkedin teilen Via Mail teilen

Das könnte Sie auch interessieren

Verwandte Artikel

Technische Universität Wien